ITの基礎知識|ITパスポート・基本情報

【基本情報技術者試験】の記事一覧

この記事での学習内容 ITパスポート 基本情報 応用情報

小数の表現を理解する。

用語例: 固定小数点数,単精度浮動小数点数,倍精度浮動小数点数,仮数,指数

小数の表現方法の種類

小数の表現方法には固定小数点数と浮動小数点数があります。また、浮動小数点数には、単精度浮動小数点数と倍精度浮動小数点数などがあります。

固定小数点数

コンピュータで負の数を含む整数の数値データを扱うときは、固定小数点数という方式を使うのが一般的です。

固定小数点数では、次のようにデータを記憶します。

  1. データの格納に必要なビット長の記憶領域をあらかじめ用意する。
  2. 小数点の位置を決めて、各桁の2進数値を各ビットに当てはめる。
  3. 先頭の1ビットを正負の符号ビットとして扱う。

なお、固定小数点数のビット長はコンピュータによって異なりますが、16ビットや32ビット長などが一般的です。

浮動小数点数

浮動小数点数は、文字通り小数点の位置が浮いて移動するように見えるので、浮動小数点数と呼ばれています。

この方式では、非常に大きな数や小さい数を扱うことが出来ます。
例えば、32ビットの固定小数点数の場合、正の数なら 231-1 が最大の数となりますが、32ビットの浮動小数点数の場合、3.4 × 1038 という非常に大きな値となります。

浮動小数点数の正規化

浮動小数点数では、同じ数値を仮数部、指数部の調整次第でいろいろな表現が可能になります。しかし、コンピュータにとって表現方法が一定ではないのは都合が悪いため、仮数部の小数第1位に0以外が来るようにします。このことを正規化とよんでいます。

なお、仮数部の整数部が基数1桁に収まるようにすることを正規化とする場合もあります。後述する「バイアス表現」を使う場合に、この方法を使います。

例) 1.5 という10進数の値を浮動小数点数として表現
  15 × 10-1
  1.5 × 100 ← こちらを正規化されたデータとする場合もある
  0.15 × 101 ← 正規化されたデータ
  0.015 × 102

浮動小数点数の表現方法

浮動小数点数は、仮数部の符号、指数部、仮数部を用いて表現します。
仮数部の符号は、0か正の数の場合は0を、負の数の場合は1とします。
指数部は基数を何乗するのかという値を入れます。

 

浮動小数点数の表現形式

浮動小数点数の表現形式にはいくつかの種類があります。
ここでは、24ビットの浮動小数点数について、『バイアス表現』と使わない形式と使う形式を紹介します。

*バイアス:下駄履き、底上げ

バイアス表現を使わない形式

24ビットの内、1ビットを符号ビット、7ビットを指数部、16ビットを仮数部とします。
これを用いて、10.375(10) を表現してみます。

10.375(10) を2進数で表すと、1010.011(2) となります。この数は正の数ですので、符号ビットは「0」となります。

次に、仮数部が1未満になるように正規化を行います。
1010.011 = 0.1010011 × 24 となるので、仮数部の上位から「1010011」を入れ、残りビットは0とします。

最後に指数部は4を7桁の2進数に変換し、「0000100」を入れます。

バイアス表現を使う形式

24ビットの内、1ビットを符号ビット、8ビットを指数部、15ビットを仮数部とします。
これを用いて、-10.375(10) を表現してみます。

-10.375(10) を2進数で表すと、-1010.011(2) となります。この数は負の数ですので、符号ビットは「1」となります。

次に、仮数部が1.**になるように正規化を行います。
1010.011 = 1.010011 × 23 となるので、ここから小数点以下の部分「010011」を抜き出し、仮数部の上位から「010011」を入れ、残りビットは0とします。

最後に指数部分ですが、ここで『バイアス表現』を使います。
バイアスとは「下駄を履かせる、底上げする」という意味ですが、マイナスの数値を符号なしの2進数で表すために、所定の数(=バイアス値)を加えて表す方法です。

今回は指数部分を8ビットとし、最小値の-127を0と表すために、バイアス値を127とします。指数部の値は3ですので、これに127を加えた130を2進数に変換し「10000010」を指数部に入れます。

単精度浮動小数点数と倍精度浮動小数点数

浮動小数点数を32ビットで表現する方法を単精度浮動小数点数といいます。

ここから使用する桁数を増やし、精度を上げる場合は64ビットの倍精度浮動小数点数を利用します。

 

この記事での学習内容 ITパスポート 基本情報 応用情報負の数の表現(補数表現)を理解する。用語例: BCD (Binary Coded Decimal:2 進化 10 進),パック 10 進数2進数における表現の問題点整数の場合は桁数が多くなる程度ですが、小数の場合はそもそも表現できる数が少ないため、どうしても「誤差」が生じてしまいます。例えば、10進数の 0.75 は、2進...

Read more...

基数

2017.08.21
この記事での学習内容 ITパスポート 基本情報 応用情報2 進数,8 進数,10 進数,16 進数,n 進数の表現,2 進数と 10 進数などの基数の変換手法 を理解する。記数法私たちが一般的に数値を扱うときには0~9までの数字を使う、「10進法」を用いています。 一方で通信やコンピュータの分野では「2進法」「8進法」「16進法」などが使われます。10進法では0~9までの数字を...

Read more...

離散数学とは

2017.08.08
離散数学とは離散数学(りさんすうがく、英語:discrete mathematics)とは、原則として離散的な(言い換えると連続でない、とびとびの)対象をあつかう数学のことである。有限数学あるいは離散数理と呼ばれることもある。グラフ理論、組み合わせ理論、最適化問題、計算幾何学、プログラミング、アルゴリズム論が絡む[1]応用分野で、その領域を包括的・抽象的に表現する際に用いられることが多い。また...

Read more...